Overexpression of EVE1, a novel ubiquitin family protein, arrests inflorescence stem development in Arabidopsis
نویسندگان
چکیده
In Arabidopsis, inflorescence stem formation is a critical process in phase transition from the vegetative to the reproductive state. Although inflorescence stem development has been reported to depend on the expression of a variety of genes during floral induction and repression, little is known about the molecular mechanisms involved in the control of inflorescence stem formation. By activation T-DNA tagging mutagenesis of Arabidopsis, a dominant gain-of-function mutation, eve1-D (eternally vegetative phase1-Dominant), which has lost the ability to form an inflorescence stem, was isolated. The eve1-D mutation exhibited a dome-shaped primary shoot apical meristem (SAM) in the early vegetative stage, similar to that seen in the wild-type SAM. However, the SAM in the eve1-D mutation failed to transition into an inflorescence meristem (IM) and eventually reached senescence without ever leaving the vegetative phase. The eve1-D mutation also displayed pleiotropic phenotypes, including lobed and wavy rosette leaves, short petioles, and an increased number of rosette leaves. Genetic analysis indicated that the genomic location of the EVE1 gene in Arabidopsis thaliana corresponded to a bacterial artificial chromosome (BAC) F4C21 from chromosome IV at ∼17cM which encoded a novel ubiquitin family protein (At4g03350), consisting of a single exon. The EVE1 protein is composed of 263 amino acids, contains a 52 amino acid ubiquitin domain, and has no glycine residue related to ubiquitin activity at the C-terminus. The eve1-D mutation provides a way to study the regulatory mechanisms that control phase transition from the vegetative to the reproductive state.
منابع مشابه
High Constitutive Overexpression of Glycosyl Hydrolase Family 17 Delays Floral Transition by Enhancing FLC Expression in Transgenic Arabidopsis
Vitis vinifera glycosyl hydrolase family 17 (VvGHF17) is a grape apoplasmic β-1,3-glucanase, which belongs to glycosyl hydrolase family 17 in grapevines. β-1,3-glucanase is not only involved in plant defense response but also has various physiological functions in plants. Although VvGHF17 expression is negatively related to the length of inflorescence in grapevines, the physiological functions ...
متن کاملArabidopsis JAGGED LATERAL ORGANS Is Expressed in Boundaries and Coordinates KNOX and PIN Activity W
Plant lateral organs are initiated as small protrusions on the flanks of shoot apical meristems. Organ primordia are separated from the remainder of the meristem by distinct cell types that create a morphological boundary. The Arabidopsis thaliana gain-of-function mutant jagged lateral organs-D (jlo-D) develops strongly lobed leaves, indicative of KNOX gene misexpression, and the shoot apical m...
متن کاملULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by...
متن کاملThe ACA10 Ca-ATPase Regulates Adult Vegetative Development and Inflorescence Architecture in Arabidopsis
The Arabidopsis (Arabidopsis thaliana) compact inflorescence (cif) genotype causes altered adult vegetative development and a reduction in elongation of inflorescence internodes resulting in formation of floral clusters. The cif trait requires both a recessive mutation, cif1, and the activity of a naturally occurring dominant allele of an unlinked gene, CIF2. We show here that the pseudovertici...
متن کاملThe ACA10 Ca2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis.
The Arabidopsis (Arabidopsis thaliana) compact inflorescence (cif) genotype causes altered adult vegetative development and a reduction in elongation of inflorescence internodes resulting in formation of floral clusters. The cif trait requires both a recessive mutation, cif1, and the activity of a naturally occurring dominant allele of an unlinked gene, CIF2(D). We show here that the pseudovert...
متن کامل